
Declarative Specification of Software Architectures

John Penix and Perry Alexander
KBSE Lab, ECECS Dept.

Universit,y of Cincinnati
Cincinnati, Ohio 45221-0030

{ jpenix, alex}@ececs . uc . edu

Abst iract

Scalzng formal methods t o large, complex systems re-
quzres methods of modelzng systems at high levels of ab-
stractron In thas paper, we describe such a method for
speczfyzng system requzrements a t the software archztec-
ture level A n architecture represents a way of breakzng
down a system rnfo a set of tnterconnected components
W e use archztecture theorzes to speczfy the behavzor of
a system zn terms of the behuuaor of zts components vza
a collectzon of axzoms The axaoms descrabe the eflects
and lzmzts of component varzaizon and the assumptzons
a component can make about the envzronment provzded
by the archztecture A s a result of the method, the ver-
zjicatron of the baszc archztecture can be separated from
the verzjicatron of the zndrvadual component znstantz-
atzons. We present an example of uszng archztecture
theoraes t o model the task coordznatzon archztecture of
a multz-threaded plan execution system

1 Introduction

Large systems are specified and implemented as a
collection of interconnected components. The goal is
to decompose the system in such a way that the prop-
erties of the parts can be composed to create properties
of the larger system. The architecture is the struc-
ture of the system, i.e., the assignment of functional-
ity to components, and the interaction among compo-
nents [15]. Viewing each component as an independent
system with its own architecture results in an overall
hierarchical system structure.

Formalisms have recently been introduced to make
software architecture a more rigorous activity [l, 4, 11,
151. Formal methods allow a (designer to model aspects
of a software system and apply mathematical analy-
sis/verification techniques. In the case of software ar-
chitecture, component interfatces and interconnections

0-8186-7961-1197 $10.00 0 '1997 IEEE
201

K 1 au s H avelun d
Recom Technologies, NA4SA Ames

Code IC,]VIS 269-2
Moffet Field, CA 94035 USA

havelund@ptolemy.arc.nasa.gov

are defined and augmented with formal specificatlions
and formal languages, such as process algebras, are
used to formally specify Component interactions.

These existing format1 models of software architec-
ture are concerned with formalizing specific architec-
tural styles such as pipe-filter and client-server. While
architectural styles abstract, away many implementa-
tion details, each stmill represents a highly reduced subset
of'the space of possible ,system designs. The reduction
of the design space is what, makes a style usable by
human designers. However) the fact that t,he space is
reduced indicates that the choice of an architectural
st,yle is an important design decision that should not
be made prior t o initial rlequirements specification. The
alternatives for decomposing the system requirements
should drive the selection of a specific architectural
style.

When decomposing system requirements, the goal is
to capture the relationship between the behavior of the
system and the behavior of its components. From the
perspective of the architecture, we would like to know
the effects and limits of component variation. Specif-
ically, we want t o know what component behavior is
necessary to guarantee correct system-level behavior
and how variation in component behavior affects the
behavior of the system. For each Component, we are
interested in the assumptions that can be made about
the environment provided by the architecture.

Effective modeling and manipulation of these rela-
tionships requires an architecture representation that
abstracts out operational details and provides a declar-
ative specification of an axhitecture. Declarative spec-
ifications state what something does without stating
how it does it. The required funct>ionality is separated
from the non-required side effects of implementation
decisions. In the case of software architecture, we must
relate the behavior of the syst.em to the behavior of the
subcomponents independent of the style in which the
architecture is implemented.

mailto:havelund@ptolemy.arc.nasa.gov

With this goal in mind, we have extended Srriith and
Lowry’s methods for specifying the structure of algo-
ri thms using algorithm theories [16, 181 to specify the
structure of architectures. An archi tec ture t h e o r y con-
strains the behavior of a system in terms of the behav-
ior of i ts subcomponents via a collection of axioms. The
axiomatic constraints can be used to reason in both a
top-down and a bottom-up manner. Given a system
specification, an architecture theory, and a subset of
the components in the architecture, we can determine
the functionality required in the missing components.
Conversely, given a collection of components and an ar-
chitecture theory, we can determine the functionality
of the system constructed by plugging the components
into the architecture.

In this paper, we show how algebraic theories can be
used to specify properties of software architectures. We
begin by describing how components and interconnec-
tions can Se specified axiomatically. We then describe
architecture theories and their potential role in soft-
ware development. Nest, we give an example of using
architecture theories by showing their application to
modeling and verifying a plan execution system. We
follow this with a discussion of related work and con-
clude with a summary and a statement of future work.

2 Specification Fundamentals

Specifications for both components and architcc-
tures are expressed as algebraic theories. Theories de-
fine opera t ions over a collection of sorts and constrain
the behavior of the operations via a set of a x i o m s . A
sort , like a type, is a set of values. Operations specify
how to construct, modify and differentiate values of the
sort. The axioms define equivalence sets of values in
the sort.

Theory morphisms are t,he formal mechanism un-
derlying two methods of composing smaller theories
t o form larger ones: e x t e n s i o n and parame ter z za -
t i o n [lo , 171. A t h e o r y m o r p h i s m maps the sorts and
operators of one theory to sorts and operators of an-
other theory such that the axioms of first theory are
valid theorems in the second theory. Theory B is an
e x t e n s i o n of theory A if B contains all of the sorts, op-
erators and axioms of A. An extension is represented
by a theory morphism (from A to B) tha t maps each
sort and operator to itself (the identity morphism) in
the target theory.

A parame ter i zed t h e o r y is a pair of theories: a pa-
r a m e t e r t h e o r y and a targe t t h e o r y that is an extension
of the parameter theory [3]. A parameter theory is
instantiated by a theory morphism tha t maps the pa-
rameter theory to the ac tua l p a r a m e t e r . This activity

r - - - - - - - - _ _ _ _ _ _ _ _ _ _ _ -

I

I

I

I Parameterized Theory I
I

I Parameter - p Target I
I Theory Theory I

- - - - - _ _ _ _ _ _ _ _ _ _ -

I - - -“I 1 ” l
Actual -, Instianted

Parameter p’ Theory

Figure 1. Parameterized Theory Instantiation

is depicted by the parameter passing diagram in Fig-
ure 1. The resulting i n s tan t ia t ed t h e o r y is constructed
by computing the p a s h o a t of the diagram [a, 101. This
has the effect of replacing the parameter theory by the
actual parameter according to the translation defined
by h.

We use theories to specify components using two
predicates: a precond i t ion and a pos tcond i t ion [8]. The
precondition specifies the set of domain values tha t
have a defined output , called the legal i n p u t s to the
problem. The postcondition specifies the relationship
tha.t must hold between a legal input and a f eas ib le
ou tpu t . A theory based framework can also be used to
specify abstract da t a types [5] providing a direct path-
way to extend our ideas to a more complex component
model.

A component is represented formally as an exten-
sion of the problem t h e o r y [18] shown in Figure 2(a).
A specification for a specific problem is created by a
specification morphism from the problem theory tha t
provides definitions for the domain, range, precondition
and postcondition. For example, a search problem is
specified in Figure 2(b). A c o m p o n e n t theory’ extends
a problem theory by adding ari axiom slalirig tha t a
valid output exists for every legal input, as shown in
Figure 2(c). The specification for a specific compo-
nent is created by extending a component specification
with definitions for the domain, range, precondition
and postcondition.

3 Architecture Specification

An arch,itectu,re fheory specifies the behavior of a sys-
tem in terms of the behavior of its subcomponents via
a collection of axioms. Formally, an architecture the-
ory is the target theory of a parameterized theory as
shown in Figure 3 . Each parameter specification of the

‘This is a generalization of program theories [18]

202

(a)

theory ProblemTheory(D,R,I,O)
sorts D,R
operators
I : D -+ Bool
0 : D, R -+ Bool

(b)

theory FindProblem(D,R,I,O)
includes
List (List ,Ret) ,
ProblemTheory(D,R,I,O)

D tuple of a:List, k:Key
R tuple of z:Rec

V a:List, k:Key, z:Rec
I(<a,k>) == true;
O(<a,k>,z) == element(a,z) A z.key = k;

sorts

axioms

(c)

theory ComponentTheory
includes

axioms
ProblemTheory(D,R,I,O)

V x:D 3 z:R I(x) + O(X,Z)

Figure 2. Problem and Component Theories

architecture theory is a problem theory. The param-
eter theories are instantiated with actual system and
component specifications by specification morphisms.
Constructing these morphisms corresponds to specify-
ing the system level requirements and selecting compo-
nents from a library. The resulting instantiated theory
is a specialized architecture theory where the defini-
tions of the system and components are consistent with
the axioms of the architecture theory. This indicates
that the architecture can be used to correctly decom-
pose the problem into the selected components.

The axioms in an architecture theory specify con-

' Architecture Problem Theory
Problem Theory Theory : I

Component > Theory

Figure 3. Architecture Theory Instantiation

true z. key=k A
Find element(z, c)

I
bagfa) = tpagfc) A I true ordered(c) I

k l
1-

Figure 4. Example Find Architecture

z
+=-

theory FindArchitecture
includes
FindProblem(D ,R ,System1 , SystemO) ,
SortComponent(List,List,SortI,SortO),
BinSearchComponent(D,R,BinI,BinO)

V a,c:List, k:Key, z:Rec
SystemI(<a,k>) + SortI(a);
(SortI(a) A SortO(a,c)) + BinI(<c,k>);
(SystemI(<a,k>) A SortO(a,c) A BinO(<c,k>,z))

axioms

+ SystemO(<a,k>,z) ;

Figure 5. Example Find Architecture

straints on the component and system specifications.
Constraints specify component behavior that is neces-
sary to guarantee correct system-level behavior. They
also define how variation in component behavior affects
the behavior of the system. This is done by defining
they system specification in terms of the component
specification. Additionally, we can state assumptions
tha t can be made by the component when it oper-
ates inside the architecture. These assumptions may
be important for determining when a component can
be properly plugged-in to an architecture.

For example, Figure 4 shows an architecture for the
Find problem that was sp'ecified in Figure 2. The block
diagram shows the component interconnections, hind-
ings to the system level interface and the preconditions
and postconditions of the subcomponents. Figure 5
shows a corresponding instantiated architecture theory
The inclusion of the problem and component theories
indicate specification morphisms from those theories
with the shown renamings. The first axiom states tha t
the Sor t component will operate over all of the legal
system inputs. The second axiom specifies that the

203

Problem
Theory -

Problem
Theory

Problem
Theory

Theory -
Problem I

Problem
Theory

Architecture
Theory A

Architecture
Schema

mal link between the specification and implementation
logics.

The verification of the architecture schema may in-
volve a sizeable human effort. However, once complete,
i t holds for every instance of the architecture. The key
point is t ha t verification of the basic architecture has
been separated from the verification of the individual
component instantiations.

1 l r l eu l j Component

5 Example
Figure 6. Overview of System Design Using
Architecture Theories

combined behavior of the two components is always
defined, i.e., there exists a legal output for Binsearch,
for every legal input t o S o r t . The third axiom states
tha t for a legal input, the behavior of the components
results in the correct behavior of the system. Based on
the component specifications in this example, all three
axioms are valid. Therefore, the decomposition of the
problem is correct.

Additional axioms can be added (by extending the
theory) to describe a certain class or style of architec-
tures. This results in a hierarchy of architecture theo-
ries that can be used to classify a problem theory and
provide a control mechanism for matching an architec-
ture theory to a problem specification [4, 171.

4 Architecture Implementation

An overview of the role of architecture theories in
system design is show in Figure 6. As described in the
previous section the specialized architecture theory is
created by instantiating an architecture theory with
a problem and component specifications. The prob-
lem decomposition described by an architecture theory
is implemented via an architecture schema. An ar-
chitecture theory may have several associated schemas
written in a target programming language or an ar-
chitec2wr.e descrzption language [15]. The architecture
schema is instantiated by substituting the selected
components into the architecture schema.

The correct>ness of the implemented system requires
tha t the constraints placed on the system by the ar-
chitecture theory are guaranteed by the architecture
schema. This can be verified based on a semantics of
the target programming language or architecture de-
scription language [ll, 151. It is possible for the se-
mantics of the target language to be formalized in a
different logic than the specification. If this is the case,
it is necessary to use institutions [6] t o provide the for-

In this section we present an example of using archi-
tecture theories to assist in the verification of a multi-
threaded plan execution system. This plan execution
system is one subsystem of NASA’s New Millennium
Remote Agent [13, 121, an artificial intelligence-based
spacecraft control system architecture tha t is scheduled
to launch in December of 1998.

5.1 Background

In the plan executive there is a collection of con-
curreiitly executing control tasks. To simplify the pro-
gramming of the individual control tasks, there is a
resource management layer tha t models the spacecraft
devices in terms of various propertzes t ha t they may
have. The control tasks often require specific values
of certain properties to be monitored and maintained
in order to execute correctly. The resource manager
must provide mechanisms for achieving, maintaining
and monitoring values of properties. It must also pre-
vent tasks with conflicting requests from executing con-
currently.

Finally, when an event occurs tha t causes a main-
tained property to become violated, the resource man-
ager must suspend the subscribed tasks and invoke
a specified recovery mechanism tha t attempts to re-
achieve the property. From the perspective of a task,
the maintained properties are invariants; they are al-
ways true while the task is executing. However, from
the perspective of the manager, the properties may
come and go.

Some subtle complexity is added to the resource
manager because it is parameterized on a collection of
failure recovery mechanisms. This complicates testing
because it is impossible to insert every possible failure
recovery mechanism that may exist.

5.2 Architecture Specification

The architecture for the resource manager is decom-
posed into four components: a control task, a prop-
erty locking mechanism, a property maintenance com-

204

theory Lockcomponent (PL,PL,I,O)
includes
Property(P), List (P ,PL) ,
ComponentTheory(PL,PL,LockI,LockO)

axioms
v p1,pl’:PL
LockI(p1) == true;
LockOp1,pl’) == p E pl’ =+ isLocked(p);

theory MaintainComponent(PL,PL,MaintI,MaintO)
includes
Property(P), List (P ,PL) ,
ComponentTheory(PL,PL,MaintI,MaintO)

D is tuple of pl:PL,sc:SCState
sorts

axioms
v p1,pl’:PL
MaintI(p1) == p E pl =+ isLocked(p);
MaintO(p1,pl’) == p E pl’ + TisLocked(p);

Figure 7. Lock and Maintain Components

ponent and a recovery mechanism. Due to the sim-
ple component model currently supported, we pass
state into components. We arc currently exploring a
more powerful component model based on hidden al-
gebras [5]. However, the current met>hod is compatible
with the system implementation in LISP.

Figure 7 shows the specification of the Lock and
Maintain Components. The specification of the Lock
component says that all of the properties will be locked
after it executes. The role of the Maintain component
is to and maintain component states that all proper-
ties will be true after it executes. The ahst,ra.ct state of
the space craft is denoted by the uninterpreted sort
SCStat e. The recovery mechanism remains uncon-
strained in tlie model. Future work will characterize
the general assumptions that can be made about exist-
ing and potential recovery mechanism and the impli-
cations on the system.

The architecture theory for the resource manager is
shown in Figure 8. The taslk body is the part of the
task that is executed while properties are being main-
tained. Because we cannot foresee what functionality
the control task will perform, we leave this component
uninstantiated. However, its relationship to the system
level specification can still be specified. For example,
the first axiom in the architecture describes the as-
sumptions that the body can make about the architec-
ture. To model property maimntenance as an invariant,
the framework must be extended by adding an invari-
ant predicate to the generic problem theory. We are
currently investigating this extension.

The system precondition must guarantee the pre-
conditions of‘ the components, directly or indirectly, to

theory ResourceManagerArch(D,R,I,O)
includes
Property(P), List (P ,PL),
% System level interface:
ProblemTheory (D ,R, System1 , SystemO)
MaintainComponent(PL,PL,MaintI.MaintO)
LockComponent(PL,PL,I,O)
RecoveryComponent(D-RIY,R-RM,I-RM,O-RM)

Task Body component
ComponentTheory(D-body ,R,TaskI ,TaskO)

D tuple of <pl:PL,a:Args,sc:SCState>
R tuple of <pl’:PL,sc’:SCState>

V p:P,pl,pl’:PL,a:Args,sc,sc’:SCState

TaskI(a,sc) A I(<a,pl,sc>)
A (p E pl j (isLocked(p) A isAcheived(p)))

sorts

axioms

+ TaskO(a,db,db’);
I(<a,pl,sc>) + LockIi(p1) A TaskI(a);

I(ql,a,sc>) A TaskO(<a,sc>,sc) A MaintO(p1,pl’)
+ 0 (<pl, a, sc>,<pl’ , sc ’>) ;

Figure 8. Resource Manager Architecture

guarantee predictable behavior and termination of the
system. Therefore, the precondition must guarantee
tha t the lock mechanism will work and that the body
will execute if the properties are achieved. The third
axiom state that for legal inputs the effect of the exe-
cution of the resource manager will be be the desired
efTect of the task body. In effect, the property maintr-
nance behavior is not visible externally because if does
not directly effect the post condition.

5.3 Implementation

The Remote Agent Executive is implemented in
LISP. An informal diagram of the implementation of
the resource manager is shown in Figure 9. The con-
trol tasks are coordinated by subscribing to a lock for
the desired property. There is a daemon executing
concurrently with the control tasks that monitors the
state of the spacecraft (viia the database) and the prop-
erty locks. If there is an inconsistency between the
database and the locks, the daemon suspends all tasks
subscribed to the property while some action is taken
t o re-achieve the property.

In order to verify properties of the implementation
of the resource manager architecture, parts of the LISP
code were hand-translating into the Promela language
for the Spin model checker [9]. Promela supports mod-
eling of multi-process systems and uses an interleaving
model of concurrency. Spin does exhaustive state space

205

Spacecraft

Control
Comman

Monitors

Property Locks

Lock
\ Event

Database m

Maintain Properties
Daemon

Figure 9. Remote Agent Executive Resource
Manager

exploration to verify temporal properties of Promela
programs.

Figure 10 shows the implementation of the Lock
component. The with-maintained-prop function is
called by the task to performs the subscription and
achieving process. The task passes in a body of code
to be executed while the property is maintained. Fig-
ure 11 shows the implementation of the Maintain com-
ponent. This component is implemented as a daemon
process that runs concurrently with the tasks. The
daemon checks the consistency of the locked properties
and the state of the spacecraft when ever there is an
update to either.

The formal model has been successfully used to find
errors in the generic architecture tha t were not found
by testing an instantiated system. The first error was
found attempting to verify that all locks are released
when a task finishes executing. Spin identified a case
where a task could be aborted and would fail to release
its locks due to the lack of an atomic section within the
release lock function call. The second bug was found
when attempting to verify that a task would eventually
terminate when has a property violated. In this case,
Spin found a scenario where a component would not
abort when it should. This was due to the lack of
the atomic section within get prop l o c k that appears
in the model. A complete report of this verification
activity is in preparation [7].

These subtle bugs persisted in the system through-
out many months of testing and simulation. This in-
dicates the difficulty in finding such bugs in a fully

#define db-query (p)
db[p.mem-prop] == p.mem-Val

#define get-prop-lock(this,p,err)
atomic{

f ail-if -incompatible-prop(p, err) ;
append(this,locks[p.mem~prop].subscribers~;
if
: : 1ocksCp.mem-prop] .mem-Val == undef -value ->

locks Cp. mem-prop] . mem-Val = p .mem-Val ;
locks [p.mem-propl .achieved = db-query(p)

:: else
fi;
signal-event(L0CK-EVENT)

1

#define achieve(p,err)
if
: : db-query(p)
: : else ->

if
: : db [p. mem-prop] = p . mem-val
:: err = 1
fi

fi

#define with-maintained-prop(this ,p, task-body)
boo1 err = 0;
+

get -prop-lock (this, p ,err) ;
achieve-lock-prop(this ,p,err) ;
task-body

unless
1

{err I I active-tasks [this] .state == ABORTED) ;
release-lock(this,p)

Figure 10. Model of Lock Mechanism

instantiated system. The fact the we were able to find
the bugs shows the potential benefits of separating the
properties of the generic architecture from the prop-
erties of the entire system. This not only allowed us
to capturing important properties of the system but
also reduced the size of the model so tha t is could be
handled by exhaustive state-space exploration.

6 Related Work

Our work is an extension of the work done on
Kestrel’s Interactive Development System (KIDS) [16,
181. In KIDS, the structure of specific algorithms, such
as global search or divide and conquer, are represented
as algorithm theories. Currently, the program schemes

206

proctype Maintain-Prop-Daemon(Task1d this)(
bit lock-violation;
byte event-count = 0;
bit first-time = true;
do
: : check-locks(1ock-violation) ;
if
: : lock-violation ->

: : else
fi;
if
:: (!first-time &&

do-aut omat ic-recovery

Ev [MEM-EVENT] . count
+ Ev [LOCK-EVENT] . count ! = event-count) ->
event-count = Ev [MEM-EVENT] . count

+ Ev [LOCK-EVENT] .count
: : else ->

first-time = false;
wait-for-events(this,MEM-EVENT,LOCK-EVENT)

fi
od

1 ;

Figure 11. Model for Maintenance Daemon

that are used to implement a.lgorithnis theories result in
functional style programs. Architecture theories gen-
eralize algorithm t,heories by specifying structure in
terms of subcomponent pro'bleni theories rather than
operators. This allows the construction of hierarchical
systems. We are currently exploring tactics for ap-
plying architecture theories for component adaptation
based on the result,s of specification matching [14].

Most efforts t o formalize software architecture [l,
151 are targeted at formalizing specific architectural
styles (pipe-filer, client-sewer, etc.) and not with the
problem decomposition aspects of architecture. There-
fore, the representations used are t800 operational to
represent the types of relationships tha t we are inter-
ested in. However, formal models of archit,ectural styles
do provide an important semantic link between an ar-
chitecture specification and implementation. The two
following approaches are particularly well suited to fill
this role due to their use of t,heories t o describe archi-
tecture.

Gerken presents a formal foundation for software ar-
chitectures tha t also uses thLeories as the main unit of
specification [4]. He introduces s t ruc ture theor i e s that
are used to interconnect components in various styles.
To overcome the inherently functional (as in functional
programming language) architecture of algebraic spec-
ification, he used a process logic to represent the con-

straints introduced by structure theories. We believe
tha t the process logic descriptions of architectures are
too operational to effec tively model the relationships
we are interested in. However, this approach does sup-
port modeling of invariants which is currently not sup-
ported in our framework.

Marconi et. al. [I l l use theory-based architecture
representations to support architecture refinement. A
refinement maps an abstract architecture description
in one style to a concrete architecture (an implenienta-
tion) in a potentially different style. This allows pro-
gram development by incremental refinements a t the
architectural level. Axioms are used tro describe style
constraints and form the basis for correctness proof of
the refinement mappings. This work is concerned with
architecture implementation and could be used to spec-
ify links between architecture theories and architecture
schemas.

7 Conclusion

This papers describ'es a technique for extending
declarative specification to the realm of soft,ware archi-
t,ecture. An nrch,ilecturc theory const,rains the behavior
of a system in t>ernis of the behavior of its subcompo-
nents via a collection of axioms. The axioms define
component interconnect,ion, interface binding and the
correctness of an architecture. These relationship are
specified declaratively, abstracting away implementa-
tion concerns. An example was presented using ar-
chitecture t,heories t o model the resource management
system of a multi-threa'ded plan executive. The result
was tha t the verification of the basic architecture was
separated from the verification of the individual com-
ponent instantiations. This was especially important
because the instantiated system was too complex for
sthndard verification and validation techniques.

8 Acknowledgmlents

The RA architecture and implementation mod-
els benefited greatly from discussions with Michael
Lowry, Ron Keesing, Barney Pell, Erann Gat and
Mark Gerkin. We would like to thank Michael Lowry,
Stephen Seidman and rnany anonymous reviewers for
helpful suggestions during the development of this
work. Support for this work was provided in part
by the Advanced Research Projects Agency and mon-
itored by Wright Labs under contract F33615-93-C:-
1316 and F33615-93-C-4304 and NASA Ames Research
Center Contract NAS2-13605.

207

References

[1] R. Allen and D. Garlan. Formalizing Architec-
tural Connection. In Proc. Sixteenth International
Conference on Software Engineering, pages 71-80,
May 1994.

[a] R . M . Burst,all and .J. A . Goguen. Putting theories
together to make specifications. In IJCAIS, pages
1045-58, 1977.

[3] II. Ehrig and B. Mahr. Fundamentals of Algebraic
Speczfications 1: Equations and Initial Semantics.
EATCS Mongraphs on Theoretical Computer Sci-
ence. Springer-Verlag, Berlin, 1985.

[4] Mark J . Gerkin. Formal Foundations for the Spec-
ificatzon of Software Architecture. PhD thesis, Air
Force Institute of Technology, March 1995.

[5] J . Goguen and J . hleseguer. Universal realiza-
tion, persist,ent, interconnection and implernenta-
tion of abstract moclules. In Proceedings o f t h e
Ninth Colloqui,un o n Automata, Languages a n d
Programming, volume 140 of LNCS, pages 265-
281, Aarhus,Denniark, July 1982. Springer-Verlag.

Introducing
institutions. Lecture Notes in Computer Science,

[6] J . A. Goguen and R. M. Burstall.

164:221-255, 1984.

[7] Klaus Havelund, Michael Lowry, and John Penix
Formal analysis of a space craft controller using
SPIN. NASA Ames Technical Report (in prepa-
ration).

[8] C. A. R. Hoare. An Axiomatic Basis for Computer
Programming. Communzcatzons of the A C M ,
12:576-580,583, 1969.

[9] Gerard J . Holzmann. Design and Verzficatzon of
Protocols. Prentice Hall, 1990.

[lo] Richard Jullig and Yellamraju V. Srinivas. Di-
agrams for software synthesis. In The Ezght
ICnowledge-Based Software Engineering Confer-
ence, pages 10-19. IEEE, September 1993.

[11] Mark Moriconi, Xiaolei Qian, and Bob Riemen-
schneider. Correct architecture refinement. IEEE
Transactions on Software Engineering, 21(4):356-
372, April 1995.

[la] Barney Pell, Ed Gamble, Erann G a t , Ron
Keesing, J im Kurien, Bill Millar, P. Pandurang
Nayak, Christian Plaunt, and Brian Williams

A hybrid procedural/deductive executive for au-
tonomous spacecraft. In P. Pandurang Nayak and
B. C. Williams, editors, Procs. of the A A A I Fall
Symposium on Model-Directed Autonomous Sys-
tems. AAAI Press, 1997.

131 Barney Pell, Erann Ga t , Ron Keesing, Nicola
Muscettola, and Ben Smith. Plan execution for
autonomous spacecraft. In Proceedings of the 1997
Iiiternational Joznf Conference on Artificial Intel-
ligence, 1997.

141 John Penix and Perry Alexander. Toward auto-
mated component adaptation. In Proceedings of
the Ninth International Conference on Software
Engineering and Knowledge Engineering, June
1997.

[15] Mary Shaw and David Garlan. Software Archz-
tecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

[16] Douglas R. Smith. KIDS: A Semiautomatic Pro-
gram Development System. IEEE Transactions
o n Software Engineering, 16(9):1024-1043, 1990.

[17] Douglas R . Smith. Toward a classification ap-
proach to design. In Proceedings of the Fifth In-
tern a t io n a1 Con feren ce on Algebraic Methodology
and Software Technology, LCNS. Springer Verlag,
1996.

[18] Douglas R. Smith and Micheal R . Lowry. Algo-
rithm Theories and Design Tactics. Science of
Computer Programming, 14:305-321, 1990.

208

